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Abstract

Let Dsg(C,,, i) be the family of split geodetic dominating sets of the cycle
graph C,,. with cardinality i and let dsg(Cy, i) = |Dsg(C,,1)|. Then the split
geodetic polynomial Dsg(C,,x) of C, is defined as Dsg(C,, x)
=2?=Ysg(cn) dsg(Cp, )xt, where Ysg(Cy) is the split geodetic domination
number of C,,.In this paper we have determined the family of split geodetic
dominating sets of the cycle graph C,, with cardinality i.Also , we have
obtained the recursive formula to derive the split geodetic domination
polynomials of cycles and also obtain some properties of this polynomial.
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1 Introduction

Let G = (V, E) be a simple graph of order | V| = n. A dominating set for a graph G = (V, E)
is a subset D of V such that every vertex not in D is adjacent to at least one member of D. The
domination number y(G) is the number of vertices in a smallest dominating set for G[1][2].
We call a set of vertices S in a graph G a geodetic dominating set if S is both a geodetic set and
a dominating set. The minimum cardinality of a geodetic dominating set of G is its geodetic
domination number, and is denoted by y,(G)[3] [4]. Split geodetic number of a graph was
studied by in [5]. A geodetic set S of a graph G = (V, E) is the split geodetic set if the induced
subgraph (VV — S is disconnected.The split geodetic number g,(G) of G is the minimum
cardinality of a split geodetic set. A set S € V(@) is said to be a split geodetic dominating set
of G if S is both a split geodetic set and a dominating set of G.The minimum cardinality of the
split geodetic dominating set of G is called the split geodetic domination number of G and is
denoted by y45(G).The concept of split geodetic domination number was introduced by P.Arul
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Paul Sudhahar and J.Jeba Lisa in [6].A domination polynomial can be studied in [7][8][9] and

the geodetic domination polynomial was studied in [10][11].

A simple graph of 'n’ vertices(n = 3) and n edges forming a cycle of length 'n" is called as
a cycle graph. In a cycle graph, all the vertices are of degree 2. Let Dsg(C,,, i) be the family of
split geodetic dominating sets of the cycle graph C,. with cardinality i and let dsg(C,,, i) =
|Dsg(C,,i)|. Then the split geodetic polynomial Dsg(C,, x) of C, is defined as Dsg(C,, x)
=Z?=Ysg(cn) dsg(C,,i)x", where Ysg(Cr) is the split geodetic domination number of C,,.

2 Split Geodetic Dominating Set of the Cycle C,,

Lemma 2.1. y;,(C,) = E]

Lemma 2.2. Dsg(C,, i) = ¢ ifand only ifi > nori < E] and Dsg(Cp, i) > 0 if E] <
i<n.

Lemma 2.3. If Y € Dg;(Cy_y,i — 1) or Y € Dy (Cp_s, i — 1) such that Y U x € C,,, 1 for some
X €n,thenY € Dsy(Cp_3,i — 1).

To find the split geodetic dominating set of C,, with cardinality i, we can only consider
Cn_1,i—1,Cy_5,1—1,C,_3,1 — 1.The families of these split geodetic dominating sets will be
empty or otherwise.Thus there are eight such combinations among which three of these
combinations are not possible that is, if Dsy(Cp_q,i —1) = Dsy(Cp_3,i —1) = ¢ then
Dsg(Ch—z,i—1) =¢ and if Dsu(Chq,i—1) # ¢, Dgg(Cp_3,i—1) #¢  then
Dsg(Cp_z,i—1) # , also if Dsg(Cp_q,i —1) = Dsg(Cr_p,i — 1) = Dsg(Cr3,i —1) = ¢
then D, (Cy, i) = ¢ . Hence we can consider only the remaining five combinations.

Lemma 2.4. (i) IfDSg (Cpopi—1) = Dgq4 (Cp—3,i—1) = ¢ then Dy (Chpyi—1) = ¢ (ii)
IfDSg(Cn_l,i —-1) = ¢, Dsg(Cn_3,i —1) # ¢ then Dsg(Cn_z,i -1) = ¢

@) If Dsg(Cn_l,i -1 = Dsg(Cn_z,i -1) = Dsg(Cn_3,i — 1) = @ then Dsg(Cn, i) = ¢.
Proof.

() IfDyy(Cooryi—1) = Dgg(Cpgi—1) = dptheni—1 > n—Tori—1< [’%1] and
i—1>n—-—3 or i—1<[n7_3]=>i—1<[n7_2]0ri—1>n—2 holds .Therefore
Dyg(Comzii = 1) = .

(i) If DigCpgi—1) # ¢ Dyy(Cogyi=1) #¢ then [ <i-1<n-
tand [ <i-1<n-3 = [2H <i-1<n-3ad || < |5 <i-

1<n-3<n-2=[22 <i-—1<n-2}Therefore Dyy(Cppi—1) # ¢ .

Vol.71No. 3s 2 (2022)
http://philstat.org.ph 2091



http://philstat.org.ph/

Mathematical Statisticianand Engineering Applications
ISSN:2094-0343
2326-9865

(i) If Dyg(Cpozi = 1) = Dyg(Cpogi = 1) = Dyg(Cpog, i = 1) = @ then i—1 < [==
ori—1>n—-1;i—-1< [nT_Z] ori—1>n—-2 and i—1<[nT_3]0ri—1>n—

1=2i< [nT_B’] +1lori>n=i< E] ori > n. Therefore D5, (Cp, i) = ¢.
Lemma 2.5. If Dy, (C,, i) # @ then we have

(1) Dgg(Cpo1,i —1) = Dgg(Cp—p, i — 1) = ¢p and Dsy(Cpr_3,i — 1) # ¢ if and
onlyifn = 3k, i = k , for some positive integer k .

(i) Dsg(Cn—Z'i -1 = Dsg(Cn—3ri —1) = ¢ and Dsg(Cn—lri —1) # 0 if
and only if i = n.

(iii) Dgg(Cp-1,i — 1) # ¢; Dsg(Cp—p, i — 1) # ¢ and Dy (Cpp_3,i — 1) = ¢p if
and only ifi =n — 1.

(iv) Dsg(Cr—1,i = 1) = ¢ ; Dsg(Cp_p,i — 1) # ¢p and D5y (Cp_3,i — 1) # ¢ if
andonly ifn =3k +2andi = [%] for some k € N.

(iv)  Dsg(Ch_q,i—1) # ¢; Dsq(Cr—z,i — 1) # ¢ and Dy (Cp_3,i — 1) # ¢ if and only if
= +1<i<n-2

Proof.

() Since Dyg(Cpogi—1) =Deg(Chpi=-1)=¢p=>i-1>n-1 ori-1<[==
andi—1>n-20ri-1< |[22] = i-1< [Z2|ori-1>n-11fi-1>
n—1 then i >nand hence Ds4(Cp, i) = ¢ which is a contradiction.Therefore i —1 <
[nT_Z]:>i<[nT_Z]+1.AlsosinceDSg(Cn_3,i—1)qtqb,then [?]Si—lﬁn—&Hence
[nT_g]+1Si<[nT_zl+1—>E]Si<[713;2]+1.Thisistrueonlywhen n = 3k + 2 and

i =k for some k € N.Conversely assume n = 3k + 2 and i = k for some k € N then by
lemma 2.2 Dgy(Cpy,i — 1) = Dgg(Cnzri — 1) = pandDyy(Cpsz,i — 1) # .

(i) Since  Dyg(Coozi—1) = ¢ andDyg(Cpo, i — 1) = ¢, theni— 1 < || ori -
1>n-21fi-1<[Z|ori-1>n-2adi-1<[Z|ori-1>n-3=i-1<
[nT—g ori—1>n-2Ifi—1< [%3] then Dy, (Cp—1,1 — 1) = ¢p,which is a contradiction ,
so we have i—1>n—2 =i >n-1 =i >n.Also since Dsy(Cp_1,i —1) # ¢ then
[HT_I] <i—1=<n-1=i<nHencei=n.Converselyif i =n,then Ds;(Cy_p,i—1) =
Dsg(Cr-2,n—1) = ¢, Dsg(Cp3,i = 1) = Dgy(Cp3,n— 1) = ¢ and Dyy(Cyy,i— 1) =
Dsy(Cny,n — 1) # ¢[SinceDsy(Cp_q,n — 1) = 1].

(i)  Assume Dyg(Cprpi— 1) # ¢, Dyg(Cpopyi — 1) # ¢ and Dyy(Cpz,i — 1) =
¢.SinceDgy(Cpzi—1) = ¢,i—1>n—30ri —1< [”T“”] Since  Dyg(Cpep i — 1) #
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[ ]<l—1<n—2 That is , L—1<[—]1sn0tp0551b1e Therefore , i —1 > n—

3=>i—-12n—-2 , But i—-1<n-2=i—-1=n—-2>=i =n-1. Conversely
suppose i =n—1 , then Dgu(Ch_y,i—1) = Dsg(Cpq,nn —2) # ¢, Dsg(Crp,i—1) =
Dy (Cpzomt — 2) # b, butDyy(Cp_s,i — 1) = Dyy(Cpg,n — 2) = .

(iv)  Assume Dsy(cp_1,i — 1) = ¢; Dsg(Cpz,i — 1) # ¢ and D5, (Cp_3,i — 1) # ¢. Since

Dsg(Cpey i 1)—¢l—1>n—1andl—1<[— dfi—-1>n—2 then

Dsy(Cp—,i — 1)andDg4(C,—3,1 — 1) are empty , which is a contradiction. Therefore i — 1 <
[—] >i< [—] + 1. Since Dgy(Cr_p,i—1) # ¢ and Dsy(Cp_3,i —1) # ¢, we have
[T] Sl—lSn—Zand[T] SL—lSn—B.Therefore[T]Si—lSn—3.Hence
[713;2] +1<i< [nT_l] + 1. This holds only whenn =3k +2andi = k+ 1 forsome k €

N. Conversely , assume n=3k+2 and i =k+1 , then Dg,(Cpy,i—1) =

3 Dsg(Cpzi — 1) # ¢pandDsy(Cos,i — 1) # .
(v)  Assume Dgu(Cp1,i—1) # ¢; Dsg(Cpoz, i — 1) # ¢; Dsg(Cp—3, i — 1) # ¢. Then

= <i-1sn-p|=<i-1sn-2 ad [ i-1<n-35 2 <i-
1<n—3:>[ ]+1<l<n—2 Conversely, suppose [—]+1<L<n—2 Therefore
[T]Sl—lsn—l ; [T <i—1< n—Zand[T] <i—1< n-3. From
these we obtain Dsg (Cp—q,i — 1) # ¢; Dsg(Cp—p, i — 1) # pandDgy(Cy3,i — 1) # ¢.
Lemma 2.6 If Dg4(Cy, i) # ¢, then

(i)Dsg(Cn—l'i -1 = Dsg(Cn—Z'i -1 = q)anstg (Crzi—1)#
¢, thenDgg (Cp, 1) ={1,4,..,n—2}{2,5,..,n—1},{3,6,..,n}.

(ii) Dyy(Cnzyi — 1) = Dyy(Cpesz,i — 1) = pandDyy(Cpy,i — 1) #
0) thenDsg(Cn, i)=1{12,..,n}

(i) Dsg(Cny,i — 1) # ¢ Dsg(Cnzyi — 1) # ¢ and DDgg(Cps, i — 1) = ¢
then Dy, (Cy, 1) = {[n] — x/x € n}.

(iv)  Dsg(Cn-1,i—1) = ; Dgg(Cpz,i — 1) # dandDyy(Cps, i — 1) # ¢,
then Dsg(Cn, D={{14,...n—4n-1},{25,...,n—3,n}L{36,...,n—2,n}}U

n—2 if 1€eX
{XU{n—-1 if1¢ X,2€X/X€ECysyi—1
n otherwise

(V)Dsg(Cn—y,i — 1) # §; Dgg(Cp—y,i — 1) # pandDsy(Cy_3,i— 1) # ¢  then
Sg(Cn: ) - {{n} UX/X € Cn 1' 1} U
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{ntifn—20rn—-3 € X, forX; €C,_p, i —1\Cp_1,i — 1

{Xlu{{n—l}ifn—ZeE X,n—3¢ X,0r X, €Cpp,i—10Cpqi—1 "

Y. U {{n— 2}if1 € Xy forX, € C_3,i—1lor X, €C3,i—1NCy_y,i—1
L n—1}ifn—3€ X,orn—4 € X, forX, € Cp_3,i —1/Cp_p,i—1
Proof.
(i)Since Dyy(Cp1,i = 1) = Dy (Cpyyi — 1) = pandDyy (Cpsyi — 1) #

¢,then by Lemma2.5(i)n = 3kandi = k forsome k € N. Hence Dy, (B, i) ={147,..,n—
2},{2,5,8,..,n — 1},{3,6,9, ..., n}.

(i))Since Dyy(Cpz,i — 1) = Dyy(Cpz,i — 1) = ¢ and Dyy(Cpy,i — 1) # ¢
, then by lemma 2.5 (ii) i = n .Therefore D, (Cp, i) = {1,2, ...,n}.

(ii)Since  Dyy(Cpog,i — 1) # ; Dy (Cpzsi — 1) # & andDyy(Coos, i —
1) = ¢ , then by lemma 2.5 (iii) i = n — 1, then Ds,(Cp, 1) = {[n] — x/x € [n]}.

((v) Dsg(Cp-1,i—1) = @; Dsg(Cpz,i — 1) # pand Dsy(Cpp_3,i — 1) #
¢ , then by theorem,we have n = 3k + 2,i = k + 1,for some k € N.We denote {{1,4,..,n —
4,n—1}{2,5,...,n—3,n}{3,6,....,n— 2,n}} and

3k if 1e€eX
{ XU{3k+1 if1¢ X,2€X/X€ECysi—1
3k + 2 otherwise

as ¥Y; and Y,.We have to prove that Cs3p,,,k+ 1 =Y, UY,.Since C3, k ={14,7,...,n—
2},{2,58,..,n—1}{3,6,9,...,n}. ,then Y; C C3p45,k + 1.Also it is obvious that Y, C
C3k42,k + 1L.Hence Cspyp,k+1 =Y, UY,. Now let Y € C3,,,k + 1, then , at least one of
the vertices labelled 3k + 2,3k + 1or3kisinY . Supposethat 3k + 2 \inY ,then, atleast
one of the vertices labeled 1,2 or 3and 3k + 1,3k or3k —lareinY.If 3k + 1 and at least
one of {1,2,3}, and also 3k and at least one of {1, 2} are in Y , then Y — {3k + 2} € C3p41, k,
a contradiction. If {3k, k} or{2,3k — 1} is a subset of Y ,then Y = X U {3k + 2} for some X €
Csp, k. Hence Y €Y. If {1,3k — 1} is a subset of Y , then Y — {3k + 2} € C3,41,k, a
contradiction. If {3,3k — 1} is a subset of Y and {3k, 3k + 1} is nota subset of Y , then Y —
3k +2 € C3_q1,k. Hence Y €Y,. If 3k + 1 or 3k is in Y , we also have the result by the
similar argument as above.

(iv) Dsg(Cr1,i1 = 1) # ¢; Dgg(Crz,i — 1) # pandDsy(Cp_3,i — 1) #
¢.First suppose that X € C,,_4,i — 1,then XU {n} € C,,i.So Y, ={{n}u X/X € D,,_4,i —
1} € Dy4(Cy, i)w suppose that C,_5,i — 1 # ¢ Let X; € C,_»,1 — 1.We denote

(X U{ fn}ifn—20rn—3 € X; forX; €ECp_y,i —1\Cp_q,i — 1
" n—-1}ifn—2¢ X;,;n—3¢& X,0rX, €ECpr_q,i—1 NCpq,i—1

by Y,.we know that at least one of the vertices labeledn — 3,n — 2or 1
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isinX;.Ifn —2orn — 3 isin X, then X; U {n} € C,,, i, otherwise X; U {n — 1} € C,,, i.Hence
Y, € C,,i.Consider C,_3,i — 1 # ¢p.Let X, € C,_3,1 — 1.We denote

{X U{{R—Z}lfl E XZfOT‘XZECn_3,i—1OT‘ XZECn_3,i—1ﬂCn_2,i—1
" ln—1}ifn—3€ X,orn—4 € X, forX, € Cp_3,i —1/Cpp,i—1

by Y;. If n —3o0rn — 4is in X, then X U {n — 1} € C,, i, otherwiseX, U {n — 2} €
C,, i.Hence Y; € Y .Therefore we have proved thatY; UY, U Y; € C,, i.Now suppose that Y €
Cn, 1,50, Y contain at least one of the vertices labeled n,n —1orn—2.Ifn €Y, so at least
one of the vertices labeled n —1,n —2o0rn—3 and 1,2o0r 3 areinY .Ifn—2 €Y orn —
3 € Y then Y =X U {n} for some X € C,,_;,i — 1.Hence Y € Y,. Otherwise Y = X U {n —
1} forsome X € C,,_,,i — 1.HenceY € Y, Ifn — 1orn — 2isinY , we also have the result
by the similar argument as above.

3 Split Geodetic Domination Polynomial of a cycle.

Let Dsg(C,, i) be the family of split geodetic dominating sets of the cycle graph C,,. with
cardinality i and let dsg(C,, i) = |Dsg(C,,i)|. Then the split geodetic polynomial Dsg(C,, x)

of C, is defined as Dsg(C,, x) :Z?=ysg(cn) dsg(C,,i)x", where Ysg(Cy) is the split geodetic

domination number of C,.In this paper we have determined the family of split geodetic
dominating sets of the cycle graph C,, with cardinality 1.

Lemma 3.1. For every n=>9 , Dsg(Cp,x) = x[DSg(Cn_l,x) + Dsg(Cyz, x) +

Dy, (Cy3,x)] with initial values

Dsg(CSJx) = x3

Dsy(Cy,x) = 4x3 + x*;

Dg4(Cs,x) = 5x3 4 5x* + x>;

Ds4(Ce,x) = 12x3 + 10x* + 6x° + x°;

Dsy(Cy,x) = 14x3 + 21x* + 16x° + 7x° + x7;

Dyy(Cg,x) = 8x> 4+ 31x* + 36x° + 23x*8x7 + x,;

Dy (Co, x) = 3x3 + 34x* + 62x5 + 58x*31x7 + 9x® + x°

Tablel: Ds4(Cy, ) ,the number of split geodetic dominating set of C,, with cardinality j

nj |3 4 5 6 7 8 9 10 11 12 |13 |14

3 1
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6 12 |10 |6 1

7 14 |21 |16 |7 1

10 |0 25 |8 | 114 |88 |40 10 1

11 |0 11 |90 | 184 [195 | 127 |50 11 1

12 10 3 70 | 238 | 356 [314 | 176 |6l 12 1

13 10 0 39 246 | 536 | 639 |481 |236 |73 13 |1

14 |0 0 14 | 199 | 668 | 1087 | 1080 | 707 | 308 |8 |14 |1

Using lemma 2.6 ,we obtain ds4(Cy, j) for3 < n < 14 as shown in Tablel.
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