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Abstract  

In this paper, we prove that 𝐶𝑆[𝑆3(𝐵𝑛)] is an Eulerian lattice under the set 

inclusion relation and it is neither simplicial nor dual simplicial, if 𝑛 >  1.  
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1 Introduction 

The lattice of sublattices of a lattice with convex sublattices has been studied in some detail 

by K. M. Koh [3] in the year 1972. He had investigated the internal structure of a lattice 𝐿, in 

relation to 𝐶𝑆(𝐿), like so many other authors for various algebraic structures such as groups, 

Boolean algebras, directed graphs and so on. In 1992, V. K. Santhi [12] constructed a new 

Eulerian lattice 𝑆(𝐵𝑛) from a Boolean algebra 𝐵𝑛 of rank 𝑛. In 2012, R. Subbarayan and A. 

Vethamanickam [15] have proved in their paper that the lattice of convex sublattices of a 

Boolean algebra 𝐵𝑛, of rank 𝑛, 𝐶𝑆(𝐵𝑛) with respect to the set inclusion relation is a dual 

simplicial Eulerian lattice. Neither simplicity nor dual simplicity are characteristics 

associated with the set inclusion relation. 

       In this paper, we are going to look at the structure of 𝐶𝑆[𝑆3(𝐵𝑛)] and prove it to be 

Eulerian under ′ ⊆′ relation. 𝑆(𝐵2) is shown in figure 1. We note that 𝑆(𝐵2) contains three 

copies of 𝐵2, we call them left copy, right copy and middle copy of 𝑆(𝐵2).  



Mathematical Statistician and Engineering Applications 

ISSN: 2094-0343 

2326-9865 

2099 
 

Vol. 71 No. 3s2 (2022) 

http://philstat.org.ph 

 

 

 

Figure 1 

Lemma 1.1. [8] A finite graded poset 𝑃 is Eulerian if and only if all intervals[𝑥, 𝑦] of length 

𝑙 ≥  1 in 𝑃 contain an equal number of elements of odd and even rank.  

Lemma 1.2. [13] If 𝐿1 and 𝐿2 are two Eulerian lattices then 𝐿1  ×  𝐿2 is also Eulerian.  

        There is no way to contain a three element chain as an interval. In the case that an 

undefined term needs to be referred to, we use [2], [11] and [12]. 

 

                                                          Figure 2-𝑺𝟑(𝑩𝟐) 

2 The Eulerian property of the lattice 𝐶𝑆[𝑆3(𝐵𝑛)]  
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Lemma 2.1. For 𝑛 ≥ 1, we have 1 + 2 + (
𝑛

1
) + 2 + 2 + 2 [2 + (

𝑛

1
) + 2] + 2 [(

𝑛

1
) + 2] +

2 (
𝑛

1
) + (

𝑛

2
) + 22 [(

𝑛

1
) + 2] + 2 (

𝑛

1
) + (

𝑛

2
) + 2 [2 (

𝑛

1
) + (

𝑛

2
)] + 2 (

𝑛

2
) + (

𝑛

3
) + 22 [2 (

𝑛

1
) +

(
𝑛

2
)] + 2 (

𝑛

2
) + (

𝑛

3
) + 2 [2 (

𝑛

2
) + (

𝑛

3
)] + 2 (

𝑛

3
) + (

𝑛

4
) + ⋯ + 22 [2 (

𝑛

𝑛−3
) + (

𝑛

𝑛−2
)] +

2 (
𝑛

𝑛−2
) + (

𝑛

𝑛−1
) + 2 [2 (

𝑛

𝑛−2
) + (

𝑛

𝑛−1
)] + 2 (

𝑛

𝑛−1
) + 22 [2 (

𝑛

𝑛−2
) + (

𝑛

𝑛−1
)] + 2 (

𝑛

𝑛−1
) +

2 [2 (
𝑛

𝑛−1
)] + 22 [2 (

𝑛

𝑛−1
)] + 1 = 33. 2𝑛 − 26.  

Theorem 2.2 𝐶𝑆[𝑆3(𝐵𝑛)], the lattice of convex sublattices of 𝑆3(𝐵𝑛)with respect to the set 

inclusion relation is an Eulerian lattice. 

Proof 

We first note that, the number of elements of ranks 0,1,2, … , 𝑛 + 1 in𝑆(𝐵𝑛)are, 1,2 +

(
𝑛

1
) , 2 (

𝑛

1
) + (

𝑛

2
) , 2 (

𝑛

2
) + (

𝑛

3
) , … , 2 (

𝑛

𝑛−2
) + (

𝑛

𝑛−1
) , 2 (

𝑛

𝑛−1
) , 1 respectively. 

The number of elements of ranks 0,1,2, … , 𝑛 + 2 in 𝑆[𝑆(𝐵𝑛)] are, 1,2 + (
𝑛

1
) + 2,2 [(

𝑛

1
) +

2] + 2 (
𝑛

1
) + (

𝑛

2
) , 2 [2 (

𝑛

1
) + (

𝑛

2
)] + 2 (

𝑛

2
) + (

𝑛

3
) , 2 [2 (

𝑛

2
) + (

𝑛

3
)] + 2 (

𝑛

3
) +

(
𝑛

4
) , … ,2 [2 (

𝑛

𝑛−2
) + (

𝑛

𝑛−1
)] + 2 (

𝑛

𝑛−1
) , 2 [2 (

𝑛

𝑛−1
)] , 1respectively. 

The number of elements of ranks 0,1,2, … , 𝑛 + 3 in 𝑆3(𝐵𝑛) are, 1,2 + (
𝑛

1
) + 2 +

2,2 [2 + (
𝑛

1
) + 2] + 2 [(

𝑛

1
) + 2] + 2 (

𝑛

1
) + (

𝑛

2
) , 22 [(

𝑛

1
) + 2] + 2 (

𝑛

1
) + (

𝑛

2
) + 2 [2 (

𝑛

1
) +

(
𝑛

2
)] + 2 (

𝑛

2
) + (

𝑛

3
) , 22 [2 (

𝑛

1
) + (

𝑛

2
)] + 2 (

𝑛

2
) + (

𝑛

3
) + 2 [2 (

𝑛

2
) + (

𝑛

3
)] + 2 (

𝑛

3
) +

(
𝑛

4
) , … ,22 [2 (

𝑛

𝑛−3
) + (

𝑛

𝑛−2
)] + 2 (

𝑛

𝑛−2
) + (

𝑛

𝑛−1
) + 2 [2 (

𝑛

𝑛−2
) + (

𝑛

𝑛−1
)] +

2 (
𝑛

𝑛−1
) , 22 [2 (

𝑛

𝑛−2
) + (

𝑛

𝑛−1
)] + 2 (

𝑛

𝑛−1
) + 2 [2 (

𝑛

𝑛−1
)] , 22 [2 (

𝑛

𝑛−1
)] , 1respectively. 

It is clear that the rank of 𝐶𝑆[𝑆3(𝐵𝑛)], is 𝑛 +  4. 

We are going to prove that 𝐶𝑆[𝑆3(𝐵𝑛)], is Eulerian. 

That is, to prove that this interval [𝜑, 𝑆3(𝐵𝑛)] has the same number of elements of odd and 

even rank. 

Let 𝐴𝑖 be the number of elements of rank 𝑖 in 𝐶𝑆[𝑆3(𝐵𝑛)],  𝑖 = 1,2, … , 𝑛 + 3. 

𝐴1= The number of singleton subsets of 𝑆3(𝐵𝑛)  

=1 + 2 + (
𝑛

1
) + 2 + 2 + 2 [2 + (

𝑛

1
) + 2] + 2 [(

𝑛

1
) + 2] + 2 (

𝑛

1
) + (

𝑛

2
) + 22 [(

𝑛

1
) + 2] +

2 (
𝑛

1
) + (

𝑛

2
) + 2 [2 (

𝑛

1
) + (

𝑛

2
)] + 2 (

𝑛

2
) + (

𝑛

3
) + 22 [2 (

𝑛

1
) + (

𝑛

2
)] + 2 (

𝑛

2
) + (

𝑛

3
) +

2 [2 (
𝑛

2
) + (

𝑛

3
)] + 2 (

𝑛

3
) + (

𝑛

4
) + ⋯ + 22 [2 (

𝑛

𝑛−3
) + (

𝑛

𝑛−2
)] + 2 (

𝑛

𝑛−2
) + (

𝑛

𝑛−1
) +
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2 [2 (
𝑛

𝑛−2
) + (

𝑛

𝑛−1
)] + 2 (

𝑛

𝑛−1
) + 22 [2 (

𝑛

𝑛−2
) + (

𝑛

𝑛−1
)] + 2 (

𝑛

𝑛−1
) + 2 [2 (

𝑛

𝑛−1
)] +

22 [2 (
𝑛

𝑛−1
)] + 1……………….(2.1.1) 

𝐴2  = The number of rank 2 convex sublattices in  𝑆3(𝐵𝑛) 

       = The number of edges in 𝑆3(𝐵𝑛) 

      = The number of edges containing 0 + number of edges with an atom at the bottom +  

The number of edges from the rank 2 elements+ ⋯ +The number of edges with a coatom of 

𝑆3(𝐵𝑛)at the bottom. 

Number of edges containing 0 is, 2 + (
𝑛

1
) + 2 + 2 ………………(2.2) 

The number of edges with an extreme atom at the bottom of the edge= 2 + (
𝑛

1
) + 2. There 

are 2 extreme atoms, this means that the total number of these edges will be equal to 2 [2 +

(
𝑛

1
) + 2] 

Let 𝑥 be an atom in the middle copy, then   

[𝑥, 1]

≅ {{𝑆2(𝐵𝑛)  𝑖𝑓 𝑥  𝑏𝑒 𝑖𝑛 𝑎𝑛 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓  𝑆3(𝐵𝑛), 𝑆3(𝐵𝑛−1)  𝑖𝑓𝑥 𝑏𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑖𝑑𝑑𝑙𝑒 𝑐𝑜𝑝𝑦  𝑜𝑓 𝑆3(𝐵𝑛)}} 

If [𝑥, 1]  ≅   𝑆2(𝐵𝑛) , there are 2 + (
𝑛

1
) + 2 edges.  

There are 2 extreme atoms, this means that the total number of these edges will be equal to  

2[2 + (
𝑛

1
) + 2]. If [𝑥, 1] ≅  𝑆3(𝐵𝑛−1), there are 2 + 2 + (

𝑛−1

1
) + 2 edges. There are 2 + (

𝑛

1
) 

such atoms, since, the middle copy of 𝑆3(𝐵𝑛) is of the form 𝑆2(𝐵𝑛), whose middle copy is of 

the form 𝑆 (𝐵𝑛), this means that the total number of these edges will be equal to (2 +

(
𝑛

1
))[2 + 2 + (

𝑛−1

1
) + 2]. Hence, the number of edges that have an atom at the bottom of the 

edge is a total of 2[2 + (
𝑛

1
) + 2] + 2[2 + (

𝑛

1
) + 2] + (2 + (

𝑛

1
))[2 + 2 + (

𝑛−1

1
) + 2].           

…….....(2.3) 

Now to find, the number of edges with an element of rank 2 at the bottom. 

Let 𝑥 be a rank 2 element in the left copy. Then, 

[𝑥, 1] ≅ {{𝑆(𝐵𝑛)  𝑖𝑓 𝑥 ∈ 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓  𝑙𝑒𝑓𝑡 𝑐𝑜𝑝𝑦 𝑜𝑓 𝑆3(𝐵𝑛), 𝑆2(𝐵𝑛−1)  𝑖𝑓𝑥

∈ 𝑚𝑖𝑑𝑑𝑙𝑒 𝑐𝑜𝑝𝑦  𝑜𝑓 𝑙𝑒𝑓𝑡 𝑐𝑜𝑝𝑦 𝑆3(𝐵𝑛)}} 

If [𝑥, 1] ≅ 𝑆(𝐵𝑛), there are (
𝑛

1
) + 2 edges in both extreme copies. Totally, 2((

𝑛

1
) + 2) edges 

are there. If [𝑥, 1] ≅  𝑆2(𝐵𝑛−1) , the number of edges from 𝑥 is 2 + (
𝑛−1

1
) + 2. There are 2 +

(
𝑛

1
) such elements, since, the middle copy of  𝑆3(𝐵𝑛) is of the form  𝑆2(𝐵𝑛) whose middle 

copy is of the form  𝑆(𝐵𝑛), therefore, totally 2 + (
𝑛

1
) [2 + (

𝑛−1

1
) + 2] edges in the middle of 
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the left copy of  𝑆3(𝐵𝑛).The number of edges in the left copy that have an element of rank 2 

at the bottom is = 2[(
𝑛

1
) + 2] + (2 + (

𝑛

1
))[2 + (

𝑛−1

1
) + 2]. Similarly, the number of edges in 

the right copy that have an element of rank 2 at the bottom is therefore = 2[(
𝑛

1
) + 2] + (2 +

(
𝑛

1
))[2 + (

𝑛−1

1
) + 2]. 

Let 𝑥 be a rank 2 element in the middle copy of 𝑆3(𝐵𝑛). 

Then, [𝑥, 1] ≅ {{𝑆2(𝐵𝑛−1)  𝑖𝑓 𝑥 ∈

𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓  𝑚𝑖𝑑𝑑𝑙𝑒 𝑐𝑜𝑝𝑦 𝑜𝑓 𝑆3(𝐵𝑛),  𝑆3(𝐵𝑛−2)  𝑖𝑓𝑥 ∈

𝑚𝑖𝑑𝑑𝑙𝑒 𝑐𝑜𝑝𝑦  𝑜𝑓 𝑚𝑖𝑑𝑑𝑙𝑒 𝑐𝑜𝑝𝑦 𝑆3(𝐵𝑛)}} 

If [𝑥, 1] ≅  𝑆2(𝐵𝑛−1), the number of edges from 𝑥 is 2 + (
𝑛−1

1
) + 2. There are 2 + (

𝑛

1
) such 

elements in both extreme copies. Totally, (2 + (
𝑛

1
))(2 + (

𝑛−1

1
) + 2) edges. If [𝑥, 1] ≅

 𝑆3(𝐵𝑛−2),,the number of edges from 𝑥 is 2 + 2 + (
𝑛−2

1
) + 2. There are 2 (

𝑛

1
) + (

𝑛

2
) such 

elements, therefore, totally (2 (
𝑛

1
) + (

𝑛

2
))[2 + 2 + (

𝑛−2

1
) + 2] edges in the middle of the 

middle copy of 𝑆3(𝐵𝑛). The number of edges in the middle copy that have an element of rank 

2 at the bottom is therefore 2[(2 + (
𝑛

1
))(2 + (

𝑛−1

1
) + 2)] + (2 (

𝑛

1
) + (

𝑛

2
))[2 + 2 + (

𝑛−2

1
) +

2] edges. Hence, the total number of edges from a rank 2 element can be expressed as 

follows: 2[2[(
𝑛

1
) + 2] + (2 + (

𝑛

1
))[2 + (

𝑛−1

1
) + 2]] + 2[(2 + (

𝑛

1
))(2 + (

𝑛−1

1
) + 2)] +

(2 (
𝑛

1
) + (

𝑛

2
))[2 + 2 + (

𝑛−2

1
) + 2] ……………(2.4) 

Now to find, the number of edges with an element of rank 3 at the bottom. Let 𝑥 be a rank 3 

element in the extreme copies in the left copy of 𝑆3(𝐵𝑛). 

Then, [𝑥, 1] ≅ 𝑆(𝐵𝑛−1), 𝑖𝑓𝑥 ∈ 𝑎𝑛 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 𝑙𝑒𝑓𝑡𝑐𝑜𝑝𝑦 𝑜𝑓 𝑆3(𝐵𝑛) 

                   ≅ 𝑆2(𝐵𝑛−2), 𝑖𝑓𝑥 ∈ 𝑚𝑖𝑑𝑑𝑙𝑒 𝑐𝑜𝑝𝑦 𝑜𝑓 𝑙𝑒𝑓𝑡 𝑐𝑜𝑝𝑦 𝑜𝑓 𝑆3(𝐵𝑛) 

If [𝑥, 1] ≅ 𝑆(𝐵𝑛−1), the number of edges from 𝑥 is 2 + (
𝑛−1

1
). There are 2 + (

𝑛

1
)such 𝑥′s in 

both extreme copies. Totally, (2 + (
𝑛

1
))(2 + (

𝑛−1

1
) edges from such 𝑥's in the extreme copies 

of left copy. 

If [𝑥, 1] ≅ 𝑆2(𝐵𝑛−2), then the number of edges from 𝑥 is 2 + (
𝑛−2

1
) + 2. There are 2 (

𝑛

1
) +

(
𝑛

2
) such elements in both extreme copies. Totally, (2 (

𝑛

1
) + (

𝑛

2
))(2 + (

𝑛−2

1
) + 2) edges. If 

[𝑥, 1] ≅  𝑆3(𝐵𝑛−2),,the number of edges from 𝑥 is 2 + 2 + (
𝑛−2

1
) + 2. There are 2 (

𝑛

1
) + (

𝑛

2
) 

such elements, therefore, totally (2 (
𝑛

1
) + (

𝑛

2
))[2 + 2 + (

𝑛−2

1
) + 2] edges in the middle of 

the left copy of 𝑆3(𝐵𝑛). The number of edges in the left copy that have an element of rank 3 

at the bottom is therefore 2[(2 + (
𝑛

1
))(2 + (

𝑛−1

1
))] + (2 (

𝑛

1
) + (

𝑛

2
))[2 + (

𝑛−2

1
) + 2] edges. 
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Similarly, the number of edges in the right copy that have an element of rank 3 at the bottom 

is therefore, 2[(2 + (
𝑛

1
))(2 + (

𝑛−1

1
))] + (2 (

𝑛

1
) + (

𝑛

2
))[2 + (

𝑛−2

1
) + 2]. 

Let 𝑥 be a rank 3 element in the middle copy of 𝑆3(𝐵𝑛). 

Then, [𝑥, 1] ≅ {{𝑆2(𝐵𝑛−2)  𝑖𝑓 𝑥 ∈

𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓  𝑚𝑖𝑑𝑑𝑙𝑒 𝑐𝑜𝑝𝑦 𝑜𝑓 𝑆3(𝐵𝑛),  𝑆3(𝐵𝑛−3)  𝑖𝑓𝑥 ∈

𝑚𝑖𝑑𝑑𝑙𝑒 𝑐𝑜𝑝𝑦  𝑜𝑓 𝑚𝑖𝑑𝑑𝑙𝑒 𝑐𝑜𝑝𝑦 𝑆3(𝐵𝑛)}} 

If [𝑥, 1] ≅  𝑆2(𝐵𝑛−2), the number of edges from 𝑥 is 2 + (
𝑛−2

1
) + 2. There are 2 (

𝑛

1
) + (

𝑛

2
) 

such elements in both extreme copies. Totally, (2 (
𝑛

1
) + (

𝑛

2
))(2 + (

𝑛−2

1
) + 2) edges.  

If [𝑥, 1] ≅  𝑆3(𝐵𝑛−3),,the number of edges from 𝑥 is 2 + 2 + (
𝑛−3

1
) + 2. There are 2 (

𝑛

2
) +

(
𝑛

3
) such elements, therefore, totally (2 (

𝑛

2
) + (

𝑛

3
))[2 + 2 + (

𝑛−3

1
) + 2] edges in the middle 

of the middle copy of 𝑆3(𝐵𝑛). The number of edges in the middle copy that have an element 

of rank 3 at the bottom is therefore 2[(2 (
𝑛

1
) + (

𝑛

2
))(2 + (

𝑛−2

1
) + 2)] + (2 (

𝑛

2
) + (

𝑛

3
))[2 +

2 + (
𝑛−3

1
) + 2] edges. Hence, the total number of edges from a rank 3 element can be 

expressed as follows: 2{2[(2 + (
𝑛

1
))(2 + (

𝑛−1

1
))] + (2 (

𝑛

1
) + (

𝑛

2
))[2 + (

𝑛−2

1
) + 2]} +

2[(2 (
𝑛

1
) + (

𝑛

2
))(2 + (

𝑛−2

1
) + 2)] + 2[(2 (

𝑛

1
) + (

𝑛

2
))(2 + (

𝑛−2

1
) + 2)] + (2 (

𝑛

2
) + (

𝑛

3
))[2 +

2 + (
𝑛−3

1
) + 2] ……………(2.5) 

We can proceed in the same way to find the number of edges from the bottom of a coatom of 

𝑆3(𝐵𝑛) = the number of coatoms in 𝑆3(𝐵𝑛) 

 = 2{2[2 (
𝑛

𝑛−1
)}………… (2.6) 

Hence, from (2.2), (2.3), (2.4), (2.5) and (2.6) we get, the total number of edges in 𝑆3(𝐵𝑛) is, 

 𝐴2 = 2 + (
𝑛

1
) + 2 + 2 + 2[2 + (

𝑛

1
) + 2] + 2[2 + (

𝑛

1
) + 2] + (2 + (

𝑛

1
))[2 + 2 +

(
𝑛−1

1
) + 2] + 2[2[(

𝑛

1
) + 2] + (2 + (

𝑛

1
))[2 + (

𝑛−1

1
) + 2]] + 2[(2 + (

𝑛

1
))(2 + (

𝑛−1

1
) + 2)] +

(2 (
𝑛

1
) + (

𝑛

2
))[2 + 2 + (

𝑛−2

1
) + 2] + 2{2[(2 + (

𝑛

1
))(2 + (

𝑛−1

1
))] + (2 (

𝑛

1
) + (

𝑛

2
))[2 +

(
𝑛−2

1
) + 2]} + 2[(2 (

𝑛

1
) + (

𝑛

2
))(2 + (

𝑛−2

1
) + 2)] + 2[(2 (

𝑛

1
) + (

𝑛

2
))(2 + (

𝑛−2

1
) + 2)] +

(2 (
𝑛

2
) + (

𝑛

3
))[2 + 2 + (

𝑛−3

1
) + 2]+. . . +2{2[2 (

𝑛

𝑛−1
)}………… …… (2.1.2) 

 𝐴3 = The number of 4 element convex sublattices in 𝑆3(𝐵𝑛) 

  = The number of 𝐵2's in 𝑆3(𝐵𝑛) 
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  =The number of 𝐵2′𝑠 containing 0 + the number of 𝐵2′𝑠 containing an atom at 

the bottom +  ….+ the number of 𝐵2′𝑠 containing a rank 𝑛 + 1 element at the bottom in 

𝑆3(𝐵𝑛). 

The number of 4 element convex sublattices in 𝑆3(𝐵𝑛) containing 0 as the bottom element is, 

    2[2 + (
𝑛

1
) + 2] +  2[(

𝑛

1
) + 2] + 2 (

𝑛

1
) + (

𝑛

2
)   … … … (2.7) 

Next, we find the number of 4 element convex sublattices containing an atom as the bottom 

element. 

Fix an atom 𝑥 ∈ 𝑆3(𝐵𝑛). If 𝑥 is the bottom element of the left copy of 𝑆3(𝐵𝑛), then [𝑥, 1] ≅

𝑆2(𝐵𝑛). Therefore, the number of 𝐵2's containing 𝑥 at the bottom is 2[(
𝑛

1
) + 2] + 2 (

𝑛

1
) +

(
𝑛

2
).Similarly, the number of 𝐵2′𝑠 containing the bottom element of the right copy is 2[(

𝑛

1
) +

2] + 2 (
𝑛

1
) + (

𝑛

2
).  

If 𝑥 is in the middle copy of 𝑆3(𝐵𝑛), then,  [𝑥, 1] ≅ {{𝑆2(𝐵𝑛)  𝑖𝑓 𝑥 ∈

𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓  𝑚𝑖𝑑𝑑𝑙𝑒 𝑐𝑜𝑝𝑦 𝑜𝑓 𝑆3(𝐵𝑛),  𝑆3(𝐵𝑛−1)  𝑖𝑓𝑥 𝑚𝑖𝑑𝑑𝑙𝑒 𝑐𝑜𝑝𝑦  𝑜𝑓 𝑚𝑖𝑑𝑑𝑙𝑒 𝑐𝑜𝑝𝑦 𝑆3(𝐵𝑛)}}

If [𝑥, 1] ≅ 𝑆2(𝐵𝑛) , there are 2[(
𝑛

1
) + 2] + 2 (

𝑛

1
) + (

𝑛

2
) 𝐵2's in both extreme copies. Totally, 

2{2[(
𝑛

1
) + 2] + 2 (

𝑛

1
) + (

𝑛

2
)} such 𝐵2's . If [𝑥, 1] ≅ 𝑆3(𝐵𝑛−1), then the number of 𝐵2's 

containing 𝑥 is 2[2 + (
𝑛−1

1
) + 2] + 2[(

𝑛−1

1
) + 2] + 2 (

𝑛−1

1
) + (

𝑛−1

2
). There are 2 + (

𝑛

1
) such 

elements, therefore, the total number of 𝐵2's containing all the atoms at the bottom in the 

middle of the middle copy is  2{2[(
𝑛

1
) + 2] +  2 (

𝑛

1
) + (

𝑛

2
)} + (2 + (

𝑛

1
)){2[2 + (

𝑛−1

1
) +

2] + 2[(
𝑛−1

1
) + 2] + 2 (

𝑛−1

1
) + (

𝑛−1

2
)}.  

Therefore, the number of 𝐵2's containing all the atoms of 𝑆3(𝐵𝑛) is,2[2[(
𝑛

1
) + 2] + 2 (

𝑛

1
) +

(
𝑛

2
)] + 2{2[(

𝑛

1
) + 2] +  2 (

𝑛

1
) + (

𝑛

2
)} + (2 + (

𝑛

1
)){2[2 + (

𝑛−1

1
) + 2] + 2[(

𝑛−1

1
) + 2] +

2 (
𝑛−1

1
) + (

𝑛−1

2
)}. 

                                                                                                               

..............(2.8) 

Next, fix an element 𝑥 of rank 2 in 𝑆3(𝐵𝑛)  

If 𝑥 is in the left copy of 𝑆3(𝐵𝑛). 

Then, [𝑥, 1] ≅ 𝑆(𝐵𝑛), 𝑖𝑓𝑥 ∈ 𝑎𝑛 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 𝑙𝑒𝑓𝑡𝑐𝑜𝑝𝑦 𝑜𝑓 𝑆3(𝐵𝑛) 

                   ≅ 𝑆2(𝐵𝑛−1), 𝑖𝑓𝑥 ∈ 𝑚𝑖𝑑𝑑𝑙𝑒 𝑐𝑜𝑝𝑦 𝑜𝑓 𝑙𝑒𝑓𝑡 𝑐𝑜𝑝𝑦 𝑜𝑓 𝑆3(𝐵𝑛) 

If [𝑥, 1] ≅ 𝑆(𝐵𝑛), the number of 𝐵2's from 𝑥 is 2 (
𝑛

1
) + (

𝑛

2
). There are 2 such extreme copies. 

Totally, 2(2 (
𝑛

1
) + (

𝑛

2
)) such 𝐵2's in the extreme copies of left copy. 
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If [𝑥, 1] ≅ 𝑆2(𝐵𝑛−1), then the number of 𝐵2's from 𝑥 is 2((
𝑛−1

1
) + 2) + 2 (

𝑛−1

1
) + (

𝑛−1

2
). 

There are 2 + (
𝑛

1
) such elements 𝑥 of rank 2in the middle of the left copy. Therefore, the 

total number of 𝐵2's containing a rank  2 element at the bottom in the left copy is , 2(2 (
𝑛

1
) +

(
𝑛

2
))(2 + (

𝑛

1
))[2((

𝑛−1

1
) + 2) + 2 (

𝑛−1

1
) + (

𝑛−1

2
)]. Similarly, we have the same number in the 

right copy. Therefore, the total number of 𝐵2's containing a rank 2 element at the bottom in 

the extreme copies = 2(2 (
𝑛

1
) + (

𝑛

2
))(2 + (

𝑛

1
))[2((

𝑛−1

1
) + 2) + 2 (

𝑛−1

1
) + (

𝑛−1

2
)]. 

  

If 𝑥 is in the middle copy of 𝑆3(𝐵𝑛), then 

[𝑥, 1] ≅ 𝑆2(𝐵𝑛−1), 𝑖𝑓𝑥 ∈ 𝑎𝑛 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 𝑚𝑖𝑑𝑑𝑙𝑒 𝑐𝑜𝑝𝑦 𝑜𝑓 𝑆3(𝐵𝑛) 

                                  ≅ 𝑆3(𝐵𝑛−2), 𝑖𝑓𝑥 ∈ 𝑚𝑖𝑑𝑑𝑙𝑒 𝑐𝑜𝑝𝑦 𝑜𝑓 𝑚𝑖𝑑𝑑𝑙𝑒 𝑐𝑜𝑝𝑦 𝑜𝑓 𝑆3(𝐵𝑛) 

If [𝑥, 1] ≅ 𝑆2(𝐵𝑛−1), there are 2((
𝑛−1

1
) + 2) + 2 (

𝑛−1

1
) + (

𝑛−1

2
) 𝐵2's with 𝑥 at the bottom. 

There are 2 + (
𝑛

1
)  such 𝑥's. Totally, 2 + (

𝑛

1
) {2((

𝑛−1

1
) + 2) + 2 (

𝑛−1

1
) + (

𝑛−1

2
)} 𝐵2's in the 

extreme copies of the middle copy. 

If [𝑥, 1] ≅ 𝑆3(𝐵𝑛−2),  then the number of 𝐵2's containing 𝑥 is 2[2 + (
𝑛−2

1
) + 2] + 2[(

𝑛−2

1
) +

2] + 2 (
𝑛−2

1
) + (

𝑛−2

2
). There are 2 (

𝑛

1
) + (

𝑛

2
) such elements 𝑥 of rank 2 in the middle of the 

middle copy. Therefore, the total number of 𝐵2's containing a rank 2 element at the bottom in 

the middle of the middle copy is (2 (
𝑛

1
) + (

𝑛

2
))[ 2[2 + (

𝑛−2

1
) + 2] + 2[(

𝑛−2

1
) + 2] +

2 (
𝑛−2

1
) + (

𝑛−2

2
)]. Therefore, the  number of 𝐵2's in the middle copy containing all the 

elements of rank 2 in the middle copy is, 2{(2 + (
𝑛

1
)) {2((

𝑛−1

1
) + 2) + 2 (

𝑛−1

1
) +

(
𝑛−1

2
)}} +(2 (

𝑛

1
) + (

𝑛

2
))[ 2[2 + (

𝑛−2

1
) + 2] + 2[(

𝑛−2

1
) + 2] + 2 (

𝑛−2

1
) + (

𝑛−2

2
)]. Therefore, 

the total number of 𝐵2's containing all the rank 2 elements in 𝑆3(𝐵𝑛) is, 2{2{2 (
𝑛

1
) + (

𝑛

2
) } +

(2 + (
𝑛

1
))[2((

𝑛−1

1
) + 2) + 2 (

𝑛−1

1
) + (

𝑛−1

2
)]} + 2{(2 + (

𝑛

1
))[2[(

𝑛−1

1
) + 2] + 2 (

𝑛−1

1
) +

(
𝑛−1

2
)]} + (2 (

𝑛

1
) + (

𝑛

2
))[2[2 + (

𝑛−1

1
) + 2] + 2[(

𝑛−2

1
) + 2] + 2 (

𝑛−2

1
) + (

𝑛−2

2
)] 

                                                                                                      ………(2.9) 

In the same manner, the total number of 𝐵2's containing all the rank 3 elements in 𝑆3(𝐵𝑛) is, 

2{2{(2 + (
𝑛

1
))[2 (

𝑛−1

1
) + (

𝑛−1

2
)]} + (2 (

𝑛

1
) + (

𝑛

2
))[2((

𝑛−2

1
) + 2) + 2 (

𝑛−2

1
) + (

𝑛−2

2
)]} +

2{(2 (
𝑛

1
) + (

𝑛

2
))[2[2 + (

𝑛−2

1
)] + 2 (

𝑛−2

1
) + (

𝑛−2

2
)]} + (2 (

𝑛

2
) + (

𝑛

3
))[2[2 + (

𝑛−3

1
) + 2] +

2[(
𝑛−3

1
) + 2] + 2 (

𝑛−3

1
) + (

𝑛−3

2
)]                                                          …………..(2.10) 
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Proceeding like this, we find the number of 𝐵2's containing all the rank 𝑛 + 1 element at the 

bottom in 𝑆3(𝐵𝑛) =  the number of rank 𝑛 + 1 elements in 𝑆3(𝐵𝑛) = 2{2[2 (
𝑛

𝑛−2
) +

(
𝑛

𝑛−1
)] + 2 (

𝑛

𝑛−1
)} + 2[2 (

𝑛

𝑛−1
)]                                                                 …….(2.11) 

Hence, using (2.7),(2.8),(2.9), (2.10) and (2.11) we get the total number of 4 element convex 

sublattices in 𝑆3(𝐵𝑛) is 

 𝐴3 = 2[2 + (
𝑛

1
) + 2] +  2[(

𝑛

1
) + 2] + 2 (

𝑛

1
) + (

𝑛

2
) + 2[2[(

𝑛

1
) + 2] + 2 (

𝑛

1
) + (

𝑛

2
)] +

2{2[(
𝑛

1
) + 2] +  2 (

𝑛

1
) + (

𝑛

2
)} + (2 + (

𝑛

1
)){2[2 + (

𝑛−1

1
) + 2] + 2[(

𝑛−1

1
) + 2] + 2 (

𝑛−1

1
) +

(
𝑛−1

2
)} + 2{2{2 (

𝑛

1
) + (

𝑛

2
) } + (2 + (

𝑛

1
))[2((

𝑛−1

1
) + 2) + 2 (

𝑛−1

1
) + (

𝑛−1

2
)]} + 2{(2 +

(
𝑛

1
))[2[(

𝑛−1

1
) + 2] + 2 (

𝑛−1

1
) + (

𝑛−1

2
)]} + (2 (

𝑛

1
) + (

𝑛

2
))[2[2 + (

𝑛−1

1
) + 2] + 2[(

𝑛−2

1
) +

2] + 2 (
𝑛−2

1
) + (

𝑛−2

2
)] + 2{2{(2 + (

𝑛

1
))[2 (

𝑛−1

1
) + (

𝑛−1

2
)]} + (2 (

𝑛

1
) + (

𝑛

2
))[2((

𝑛−2

1
) +

2) + 2 (
𝑛−2

1
) + (

𝑛−2

2
)]} + 2{(2 (

𝑛

1
) + (

𝑛

2
))[2[2 + (

𝑛−2

1
)] + 2 (

𝑛−2

1
) + (

𝑛−2

2
)]} + (2 (

𝑛

2
) +

(
𝑛

3
))[2[2 + (

𝑛−3

1
) + 2] + 2[(

𝑛−3

1
) + 2] + 2 (

𝑛−3

1
) + (

𝑛−3

2
)]+. . . +2{2[2 (

𝑛

𝑛−2
) + (

𝑛

𝑛−1
)] +

2 (
𝑛

𝑛−1
)} + 2[2 (

𝑛

𝑛−1
)]           ………..(2.1.3)                                                  

Proceeding like this, we find that 𝐴4, 𝐴5, . . . . 𝐴𝑛+3     

 𝐴4 =  2[2((
𝑛

1
) + 2) + 2 (

𝑛

1
) + (

𝑛

2
)] + 2[2 (

𝑛

1
) + (

𝑛

2
)] + 2 (

𝑛

2
) + (

𝑛

3
) + 2{2[2 (

𝑛

1
) +

(
𝑛

2
)] + 2 (

𝑛

2
) + (

𝑛

3
)} + 2{2[2 (

𝑛

1
) + (

𝑛

2
)] + 2 (

𝑛

2
) + (

𝑛

3
)} + (2 + (

𝑛

1
))[2[2((

𝑛−1

1
) + 2) +

2 (
𝑛−1

1
) + (

𝑛−1

2
)] + 2[2 (

𝑛−1

1
) + (

𝑛−1

2
)] + 2 (

𝑛−1

2
) + (

𝑛−1

3
)] + 2{2{2 (

𝑛

2
) + (

𝑛

3
)} + (2 +

(
𝑛

1
))[2(2 (

𝑛−1

1
) + (

𝑛−1

2
)) + 2 (

𝑛−1

2
) + (

𝑛−1

3
)]} + 2{(2 + (

𝑛

1
)){2[2 (

𝑛−1

1
) + (

𝑛−1

2
)] +

2 (
𝑛−1

2
) + (

𝑛−1

3
)}} + (2 (

𝑛

1
) + (

𝑛

2
))[2[2[(

𝑛−2

2
) + 2] + 2 (

𝑛−2

1
) + (

𝑛−2

2
)] + 2[2 (

𝑛−2

1
) +

(
𝑛−2

2
)] + 2 (

𝑛−2

2
) + (

𝑛−2

3
)]+. . . +2{2[2 (

𝑛

𝑛−3
) + (

𝑛

𝑛−2
)] + 2 (

𝑛

𝑛−2
) + (

𝑛

𝑛−1
)} + 2[2 (

𝑛

𝑛−2
) +

(
𝑛

𝑛−1
)] + 2 (

𝑛

𝑛−1
)                                   ………….. (2.1.4) 

In the same manner, 𝐴𝑛+1 =The number of convex sublattices of rank 𝑛 in  𝑆3(𝐵𝑛) 

                   =2{2(2 (
𝑛

𝑛−3
) + (

𝑛

𝑛−2
)) + 2 (

𝑛

𝑛−2
) + (

𝑛

𝑛−1
)} + 2[2 (

𝑛

𝑛−2
) +

(
𝑛

𝑛−1
)] + 2 (

𝑛

𝑛−1
) + 2{2(2 (

𝑛

𝑛−2
) + (

𝑛

𝑛−1
)) + 2 (

𝑛

𝑛−1
)} + 2{2[2 (

𝑛

𝑛−2
) + (

𝑛

𝑛−1
)] + 2 (

𝑛

𝑛−1
)} +

(2 + (
𝑛

1
)){2[2(2 (

𝑛−1

𝑛−2
)) + 2 (

𝑛−1

𝑛−2
) + 2 (

𝑛−1

𝑛−2
)] + 2[2 (

𝑛−1

𝑛−2
)]} + 2{2{2 (

𝑛

𝑛−1
)} + (2 +

(
𝑛

1
) {2(2 (

𝑛−1

𝑛−2
))}} + 2{(2 + (

𝑛

1
)){2[2 (

𝑛−1

𝑛−2
)]} + (2 (

𝑛

1
) + (

𝑛

2
)){2[2[2 (

𝑛−2

𝑛−3
)]]} + 2{2[(

𝑛

1
) +

2] + 2 (
𝑛

1
) + (

𝑛

2
)} + 2[2 (

𝑛

1
) + (

𝑛

2
)] + 2 (

𝑛

2
) + (

𝑛

3
).  

                                                                                                                     ……..(2.1.5) 
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𝐴𝑛+2 = 2{2(2 (
𝑛

𝑛−2
) + (

𝑛

𝑛−1
)) + 2 (

𝑛

𝑛−1
)} + 2[2 (

𝑛

𝑛−1
)] + 2{2[2 (

𝑛

𝑛−1
)]} + 2{2[2 (

𝑛

𝑛−1
)]} +

(2 + (
𝑛

1
))[2{2[2 (

𝑛−1

𝑛−2
)]}] + 2[2 + (

𝑛

1
)] + 2] + 2[(

𝑛

1
) + 2 (

𝑛

1
) + (

𝑛

2
) ……….(2.1.6) 

𝐴𝑛+3 = 2{2[2 (
𝑛

𝑛−1
)]} + 2 + (

𝑛

1
) + 2 + 2.  …………(2.1.6) 

Case(i): Suppose that 𝑛 is odd. Therefore, 𝑛 + 4 is odd.  

𝐴1 − 𝐴2 + 𝐴3−. . . −𝐴𝑛+1 + 𝐴𝑛+2 − 𝐴𝑛+3 =  1 + 2 + (
𝑛

1
) + 2 + 2 + 2 [2 + (

𝑛

1
) + 2] +

2 [(
𝑛

1
) + 2] + 2 (

𝑛

1
) + (

𝑛

2
) + 22 [(

𝑛

1
) + 2] + 2 (

𝑛

1
) + (

𝑛

2
) + 2 [2 (

𝑛

1
) + (

𝑛

2
)] + 2 (

𝑛

2
) + (

𝑛

3
) +

22 [2 (
𝑛

1
) + (

𝑛

2
)] + 2 (

𝑛

2
) + (

𝑛

3
) + 2 [2 (

𝑛

2
) + (

𝑛

3
)] + 2 (

𝑛

3
) + (

𝑛

4
) + ⋯ + 22 [2 (

𝑛

𝑛−3
) +

(
𝑛

𝑛−2
)] + 2 (

𝑛

𝑛−2
) + (

𝑛

𝑛−1
) + 2 [2 (

𝑛

𝑛−2
) + (

𝑛

𝑛−1
)] + 2 (

𝑛

𝑛−1
) + 22 [2 (

𝑛

𝑛−2
) + (

𝑛

𝑛−1
)] +

2 (
𝑛

𝑛−1
) + 2 [2 (

𝑛

𝑛−1
)] + 22 [2 (

𝑛

𝑛−1
)] + 1 − 2 + (

𝑛

1
) + 2 + 2 + 2[2 + (

𝑛

1
) + 2] + 2[2 +

(
𝑛

1
) + 2] + (2 + (

𝑛

1
))[2 + 2 + (

𝑛−1

1
) + 2] + 2[2[(

𝑛

1
) + 2] + (2 + (

𝑛

1
))[2 + (

𝑛−1

1
) + 2]] +

2[(2 + (
𝑛

1
))(2 + (

𝑛−1

1
) + 2)] + (2 (

𝑛

1
) + (

𝑛

2
))[2 + 2 + (

𝑛−2

1
) + 2] + 2{2[(2 + (

𝑛

1
))(2 +

(
𝑛−1

1
))] + (2 (

𝑛

1
) + (

𝑛

2
))[2 + (

𝑛−2

1
) + 2]} + 2[(2 (

𝑛

1
) + (

𝑛

2
))(2 + (

𝑛−2

1
) + 2)] + 2[(2 (

𝑛

1
) +

(
𝑛

2
))(2 + (

𝑛−2

1
) + 2)] + (2 (

𝑛

2
) + (

𝑛

3
))[2 + 2 + (

𝑛−3

1
) + 2]+. . . +2{2[2 (

𝑛

𝑛−1
)} + 2[2 +

(
𝑛

1
) + 2] +  2[(

𝑛

1
) + 2] + 2 (

𝑛

1
) + (

𝑛

2
) + 2[2[(

𝑛

1
) + 2] + 2 (

𝑛

1
) + (

𝑛

2
)] + 2{2[(

𝑛

1
) + 2] +

 2 (
𝑛

1
) + (

𝑛

2
)} + (2 + (

𝑛

1
)){2[2 + (

𝑛−1

1
) + 2] + 2[(

𝑛−1

1
) + 2] + 2 (

𝑛−1

1
) + (

𝑛−1

2
)} +

2{2{2 (
𝑛

1
) + (

𝑛

2
) } + (2 + (

𝑛

1
))[2((

𝑛−1

1
) + 2) + 2 (

𝑛−1

1
) + (

𝑛−1

2
)]} + 2{(2 +

(
𝑛

1
))[2[(

𝑛−1

1
) + 2] + 2 (

𝑛−1

1
) + (

𝑛−1

2
)]} + (2 (

𝑛

1
) + (

𝑛

2
))[2[2 + (

𝑛−1

1
) + 2] + 2[(

𝑛−2

1
) +

2] + 2 (
𝑛−2

1
) + (

𝑛−2

2
)] + 2{2{(2 + (

𝑛

1
))[2 (

𝑛−1

1
) + (

𝑛−1

2
)]} + (2 (

𝑛

1
) + (

𝑛

2
))[2((

𝑛−2

1
) +

2) + 2 (
𝑛−2

1
) + (

𝑛−2

2
)]} + 2{(2 (

𝑛

1
) + (

𝑛

2
))[2[2 + (

𝑛−2

1
)] + 2 (

𝑛−2

1
) + (

𝑛−2

2
)]} + (2 (

𝑛

2
) +

(
𝑛

3
))[2[2 + (

𝑛−3

1
) + 2] + 2[(

𝑛−3

1
) + 2] + 2 (

𝑛−3

1
) + (

𝑛−3

2
)]+. . . +2{2[2 (

𝑛

𝑛−2
) + (

𝑛

𝑛−1
)] +

2 (
𝑛

𝑛−1
)} + 2[2 (

𝑛

𝑛−1
)] -2[2((

𝑛

1
) + 2) + 2 (

𝑛

1
) + (

𝑛

2
)] + 2[2 (

𝑛

1
) + (

𝑛

2
)] + 2 (

𝑛

2
) + (

𝑛

3
) +

2{2[2 (
𝑛

1
) + (

𝑛

2
)] + 2 (

𝑛

2
) + (

𝑛

3
)} + 2{2[2 (

𝑛

1
) + (

𝑛

2
)] + 2 (

𝑛

2
) + (

𝑛

3
)} + (2 +

(
𝑛

1
))[2[2((

𝑛−1

1
) + 2) + 2 (

𝑛−1

1
) + (

𝑛−1

2
)] + 2[2 (

𝑛−1

1
) + (

𝑛−1

2
)] + 2 (

𝑛−1

2
) + (

𝑛−1

3
)] +

2{2{2 (
𝑛

2
) + (

𝑛

3
)} + (2 + (

𝑛

1
))[2(2 (

𝑛−1

1
) + (

𝑛−1

2
)) + 2 (

𝑛−1

2
) + (

𝑛−1

3
)]} + 2{(2 +

(
𝑛

1
)){2[2 (

𝑛−1

1
) + (

𝑛−1

2
)] + 2 (

𝑛−1

2
) + (

𝑛−1

3
)}} + (2 (

𝑛

1
) + (

𝑛

2
))[2[2[(

𝑛−2

2
) + 2] + 2 (

𝑛−2

1
) +

(
𝑛−2

2
)] + 2[2 (

𝑛−2

1
) + (

𝑛−2

2
)] + 2 (

𝑛−2

2
) + (

𝑛−2

3
)]+. . . +2{2[2 (

𝑛

𝑛−3
) + (

𝑛

𝑛−2
)] + 2 (

𝑛

𝑛−2
) +

(
𝑛

𝑛−1
)} + 2[2 (

𝑛

𝑛−2
) + (

𝑛

𝑛−1
)] + 2 (

𝑛

𝑛−1
) +…- 2{2(2 (

𝑛

𝑛−3
) + (

𝑛

𝑛−2
)) + 2 (

𝑛

𝑛−2
) + (

𝑛

𝑛−1
)} +

2[2 (
𝑛

𝑛−2
) + (

𝑛

𝑛−1
)] + 2 (

𝑛

𝑛−1
) + 2{2(2 (

𝑛

𝑛−2
) + (

𝑛

𝑛−1
)) + 2 (

𝑛

𝑛−1
)} + 2{2[2 (

𝑛

𝑛−2
) +
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(
𝑛

𝑛−1
)] + 2 (

𝑛

𝑛−1
)} + (2 + (

𝑛

1
)){2[2(2 (

𝑛−1

𝑛−2
)) + 2 (

𝑛−1

𝑛−2
) + 2 (

𝑛−1

𝑛−2
)] + 2[2 (

𝑛−1

𝑛−2
)]} +

2{2{2 (
𝑛

𝑛−1
)} + (2 + (

𝑛

1
) {2(2 (

𝑛−1

𝑛−2
))}} + 2{(2 + (

𝑛

1
)){2[2 (

𝑛−1

𝑛−2
)]} + (2 (

𝑛

1
) +

(
𝑛

2
)){2[2[2 (

𝑛−2

𝑛−3
)]]} + 2{2[(

𝑛

1
) + 2] + 2 (

𝑛

1
) + (

𝑛

2
)} + 2[2 (

𝑛

1
) + (

𝑛

2
)] + 2 (

𝑛

2
) + (

𝑛

3
) +

2{2(2 (
𝑛

𝑛−2
) + (

𝑛

𝑛−1
)) + 2 (

𝑛

𝑛−1
)} + 2[2 (

𝑛

𝑛−1
)] + 2{2[2 (

𝑛

𝑛−1
)]} + 2{2[2 (

𝑛

𝑛−1
)]} + (2 +

(
𝑛

1
))[2{2[2 (

𝑛−1

𝑛−2
)]}] + 2[2 + (

𝑛

1
)] + 2] + 2[(

𝑛

1
) + 2 (

𝑛

1
) + (

𝑛

2
) - 2{2[2 (

𝑛

𝑛−1
)]} + 2 + (

𝑛

1
) +

2 + 2     

  = 0. 

Case(ii): Suppose that 𝑛 is even. Therefore, 𝑛 + 4 is even.  

𝐴1 − 𝐴2 + 𝐴3 − ⋯ + 𝐴𝑛+1 − 𝐴𝑛+2 + 𝐴𝑛+3 =  1 + 2 + (
𝑛

1
) + 2 + 2 + 2 [2 + (

𝑛

1
) + 2] +

2 [(
𝑛

1
) + 2] + 2 (

𝑛

1
) + (

𝑛

2
) + 22 [(

𝑛

1
) + 2] + 2 (

𝑛

1
) + (

𝑛

2
) + 2 [2 (

𝑛

1
) + (

𝑛

2
)] + 2 (

𝑛

2
) + (

𝑛

3
) +

22 [2 (
𝑛

1
) + (

𝑛

2
)] + 2 (

𝑛

2
) + (

𝑛

3
) + 2 [2 (

𝑛

2
) + (

𝑛

3
)] + 2 (

𝑛

3
) + (

𝑛

4
) + ⋯ + 22 [2 (

𝑛

𝑛−3
) +

(
𝑛

𝑛−2
)] + 2 (

𝑛

𝑛−2
) + (

𝑛

𝑛−1
) + 2 [2 (

𝑛

𝑛−2
) + (

𝑛

𝑛−1
)] + 2 (

𝑛

𝑛−1
) + 22 [2 (

𝑛

𝑛−2
) + (

𝑛

𝑛−1
)] +

2 (
𝑛

𝑛−1
) + 2 [2 (

𝑛

𝑛−1
)] + 22 [2 (

𝑛

𝑛−1
)] + 1 − 2 + (

𝑛

1
) + 2 + 2 + 2[2 + (

𝑛

1
) + 2] + 2[2 +

(
𝑛

1
) + 2] + (2 + (

𝑛

1
))[2 + 2 + (

𝑛−1

1
) + 2] + 2[2[(

𝑛

1
) + 2] + (2 + (

𝑛

1
))[2 + (

𝑛−1

1
) + 2]] +

2[(2 + (
𝑛

1
))(2 + (

𝑛−1

1
) + 2)] + (2 (

𝑛

1
) + (

𝑛

2
))[2 + 2 + (

𝑛−2

1
) + 2] + 2{2[(2 + (

𝑛

1
))(2 +

(
𝑛−1

1
))] + (2 (

𝑛

1
) + (

𝑛

2
))[2 + (

𝑛−2

1
) + 2]} + 2[(2 (

𝑛

1
) + (

𝑛

2
))(2 + (

𝑛−2

1
) + 2)] + 2[(2 (

𝑛

1
) +

(
𝑛

2
))(2 + (

𝑛−2

1
) + 2)] + (2 (

𝑛

2
) + (

𝑛

3
))[2 + 2 + (

𝑛−3

1
) + 2] + ⋯ + 2{2[2 (

𝑛

𝑛−1
)} + 2[2 +

(
𝑛

1
) + 2] +  2[(

𝑛

1
) + 2] + 2 (

𝑛

1
) + (

𝑛

2
) + 2[2[(

𝑛

1
) + 2] + 2 (

𝑛

1
) + (

𝑛

2
)] + 2{2[(

𝑛

1
) + 2] +

 2 (
𝑛

1
) + (

𝑛

2
)} + (2 + (

𝑛

1
)){2[2 + (

𝑛−1

1
) + 2] + 2[(

𝑛−1

1
) + 2] + 2 (

𝑛−1

1
) + (

𝑛−1

2
)} +

2{2{2 (
𝑛

1
) + (

𝑛

2
) } + (2 + (

𝑛

1
))[2((

𝑛−1

1
) + 2) + 2 (

𝑛−1

1
) + (

𝑛−1

2
)]} + 2{(2 +

(
𝑛

1
))[2[(

𝑛−1

1
) + 2] + 2 (

𝑛−1

1
) + (

𝑛−1

2
)]} + (2 (

𝑛

1
) + (

𝑛

2
))[2[2 + (

𝑛−1

1
) + 2] + 2[(

𝑛−2

1
) +

2] + 2 (
𝑛−2

1
) + (

𝑛−2

2
)] + 2{2{(2 + (

𝑛

1
))[2 (

𝑛−1

1
) + (

𝑛−1

2
)]} + (2 (

𝑛

1
) + (

𝑛

2
))[2((

𝑛−2

1
) +

2) + 2 (
𝑛−2

1
) + (

𝑛−2

2
)]} + 2{(2 (

𝑛

1
) + (

𝑛

2
))[2[2 + (

𝑛−2

1
)] + 2 (

𝑛−2

1
) + (

𝑛−2

2
)]} + (2 (

𝑛

2
) +

(
𝑛

3
))[2[2 + (

𝑛−3

1
) + 2] + 2[(

𝑛−3

1
) + 2] + 2 (

𝑛−3

1
) + (

𝑛−3

2
)]+. . . +2{2[2 (

𝑛

𝑛−2
) + (

𝑛

𝑛−1
)] +

2 (
𝑛

𝑛−1
)} + 2[2 (

𝑛

𝑛−1
)] -2[2((

𝑛

1
) + 2) + 2 (

𝑛

1
) + (

𝑛

2
)] + 2[2 (

𝑛

1
) + (

𝑛

2
)] + 2 (

𝑛

2
) + (

𝑛

3
) +

2{2[2 (
𝑛

1
) + (

𝑛

2
)] + 2 (

𝑛

2
) + (

𝑛

3
)} + 2{2[2 (

𝑛

1
) + (

𝑛

2
)] + 2 (

𝑛

2
) + (

𝑛

3
)} + (2 +

(
𝑛

1
))[2[2((

𝑛−1

1
) + 2) + 2 (

𝑛−1

1
) + (

𝑛−1

2
)] + 2[2 (

𝑛−1

1
) + (

𝑛−1

2
)] + 2 (

𝑛−1

2
) + (

𝑛−1

3
)] +

2{2{2 (
𝑛

2
) + (

𝑛

3
)} + (2 + (

𝑛

1
))[2(2 (

𝑛−1

1
) + (

𝑛−1

2
)) + 2 (

𝑛−1

2
) + (

𝑛−1

3
)]} + 2{(2 +

(
𝑛

1
)){2[2 (

𝑛−1

1
) + (

𝑛−1

2
)] + 2 (

𝑛−1

2
) + (

𝑛−1

3
)}} + (2 (

𝑛

1
) + (

𝑛

2
))[2[2[(

𝑛−2

2
) + 2] + 2 (

𝑛−2

1
) +
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(
𝑛−2

2
)] + 2[2 (

𝑛−2

1
) + (

𝑛−2

2
)] + 2 (

𝑛−2

2
) + (

𝑛−2

3
)]+. . . +2{2[2 (

𝑛

𝑛−3
) + (

𝑛

𝑛−2
)] + 2 (

𝑛

𝑛−2
) +

(
𝑛

𝑛−1
)} + 2[2 (

𝑛

𝑛−2
) + (

𝑛

𝑛−1
)] + 2 (

𝑛

𝑛−1
) +…+ 2{2(2 (

𝑛

𝑛−3
) + (

𝑛

𝑛−2
)) + 2 (

𝑛

𝑛−2
) + (

𝑛

𝑛−1
)} +

2[2 (
𝑛

𝑛−2
) + (

𝑛

𝑛−1
)] + 2 (

𝑛

𝑛−1
) + 2{2(2 (

𝑛

𝑛−2
) + (

𝑛

𝑛−1
)) + 2 (

𝑛

𝑛−1
)} + 2{2[2 (

𝑛

𝑛−2
) +

(
𝑛

𝑛−1
)] + 2 (

𝑛

𝑛−1
)} + (2 + (

𝑛

1
)){2[2(2 (

𝑛−1

𝑛−2
)) + 2 (

𝑛−1

𝑛−2
) + 2 (

𝑛−1

𝑛−2
)] + 2[2 (

𝑛−1

𝑛−2
)]} +

2{2{2 (
𝑛

𝑛−1
)} + (2 + (

𝑛

1
) {2(2 (

𝑛−1

𝑛−2
))}} + 2{(2 + (

𝑛

1
)){2[2 (

𝑛−1

𝑛−2
)]} + (2 (

𝑛

1
) +

(
𝑛

2
)){2[2[2 (

𝑛−2

𝑛−3
)]]} + 2{2[(

𝑛

1
) + 2] + 2 (

𝑛

1
) + (

𝑛

2
)} + 2[2 (

𝑛

1
) + (

𝑛

2
)] + 2 (

𝑛

2
) + (

𝑛

3
) +

2{2(2 (
𝑛

𝑛−2
) + (

𝑛

𝑛−1
)) + 2 (

𝑛

𝑛−1
)} + 2[2 (

𝑛

𝑛−1
)] + 2{2[2 (

𝑛

𝑛−1
)]} + 2{2[2 (

𝑛

𝑛−1
)]} + (2 +

(
𝑛

1
))[2{2[2 (

𝑛−1

𝑛−2
)]}] − 2[2 + (

𝑛

1
)] + 2] + 2[(

𝑛

1
) + 2 (

𝑛

1
) + (

𝑛

2
) + 2{2[2 (

𝑛

𝑛−1
)]} + 2 +

(
𝑛

1
) + 2 + 2     

                                                = 2. 

Hence the interval [∅, 𝑆3(𝐵𝑛)] has the same number of elements of odd and even rank.  

 Though in the above theorem we have proved that 𝐶𝑆[𝑆3(𝐵𝑛)] is Eulerian, it is 

neither Simplicial nor dual simplicial. 

 𝐶𝑆[𝑆3(𝐵𝑛)]is not dual simplicial since, the upper interval [{1}, 𝑆3(𝐵𝑛)] in 

𝐶𝑆[𝑆3(𝐵𝑛)]contains 8 (
𝑛

𝑛−1
) number of atoms which is greater than 𝑛 + 3, the rank of 

[{1}, 𝑆3(𝐵𝑛)],implying that [{1}, 𝑆3(𝐵𝑛)]is not Boolean. 

 𝐶𝑆[𝑆3(𝐵𝑛)]is not simplicial since, the lower interval [∅, 𝑆3(𝐵𝑛)] where 𝑙1 is the left 

extreme atom of 𝑆3(𝐵𝑛) contains 33. 2𝑛 − 26 number of atoms by Lemma 2.1, which cannot 

be equal to 𝑛 + 3, the rank of [∅, [𝑙1 ,1]], implying that [∅, [𝑙1 ,1]] is not Boolean.  

Conclusions 

 In this paper, we have proved that 𝐶𝑆[𝑆3(𝐵𝑛)] is an Eulerian lattice under the set 

inclusion 

relation which is neither simplicial nor dual simplicial, if 𝑛 >  1. We strongly believe that 

the result proved in this paper, can be extended to more general Eulerian lattices and any 

other general lattices. 
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